ESR - EVIDENCE FOR A RADICAL 1,5-HYDROGEN SHIFT

FROM OXYGEN TO CARBON

H. Itzel and H. Fischer*

Physikalisch-Chemisches Institut der Universität Zürich

CH 8001 Zürich

Rämistrasse 76

(Received in UK 9 October 1974; accepted for publication 16 January 1975)

Intramolecular 1,5-hydrogen shifts from carbon atoms to oxygen radical-centers are well known¹⁾, the Barton-reaction²⁾ being one of the examples. We wish to report the observation of an unusual intramolecular 1,5-hydrogen shift in the reverse direction, i.e. from oxygen to a carbon radical-center. The previously reported³⁾ reaction of tert.-butoxy radicals with substituted 1-cyclopropyl-carbinols was reinvestigated by ESR-spectroscopy. The primary substituted 1-cyclopropyl-1-hydroxy-carbinyl radicals 1 undergo the cyclopropyl-homoallyl-rearrangement⁴⁾ to the two isomers of substituted 3-buten-4-ol radicals cis-2 and trans-2 which are observable by ESR³⁾. For temperatures $T \ge -50\,^{\circ}\text{C}$ we also detect α -keto-radicals 3. They are formed by an intramolecular rearrangement of cis-2 involving the 1,5-hydrogen shift. This rearrangement was not observed for trans-2 and was not found reversible.

Solutions of di-tert.-butylperoxide and 1-cyclopropyl-carbinols (R = -H, -CH₃, -cyclopropyl, -phenyl) in n-hexane or 1,1,2-trichloro-trifluoroethane (10% by volume in peroxide and carbinol) were photolysed in the cavity of an ESR-spectrometer using a slow-flow technique⁵). Fig.1 shows ESR-spectra obtained at different temperatures for R = CH₃. Radical $\underline{1}$ was not observed in the temperature range covered (-130°C \leq T \leq + 60°C). For T \leq -60°C the ESR-spectrum shows the lines of cis-2 (Fig. 1a) [a_{α}^{H} = 2.214 mT; a_{β}^{H} = 3.076 mT; a_{γ}^{H} = 0.064 mT for T = -60°C, g = 2.00269]. At higher temperatures the spectrum is a superposition of lines belonging to cis-2, 3 and the 2-cyclopropyl-2-hydroxyethyl radical \bullet -CH(OH)CH₂, $\frac{\mu}{4}$ (Fig. 1b). For T \geq +30°C, $\frac{\pi}{4}$ = 1.884 mT; a_{β}^{H} = 2.055 mT; a_{γ}^{H} (-COCH₃) = 0.103 mT; a_{γ}^{H} (-CH₃) \approx 0.012 mT for T = -33°C; g = 2.0042⁵) and $\frac{\mu}{4}$ are the only observable radicals (Fig. 1c).

Fig.1 1,5-hydrogen shift for R = CH_3 ; ESR-spectra (circles denote lines of radical $\frac{4}{2}$)

Analysis of the relative radical concentrations of cis-2 and 3 by a steady-state kinetic treatment⁶) of the scheme leads to the activation energy for the rearrangement of $(20 \pm 4) \text{kJ} \cdot \text{Mol}^{-1}$ and an estimated frequency factor of 10^8 sec^{-1} . If the CH-hydrogen of 1 is replaced by deuterium the same rearrangement takes place as evident from ESR-spectra. However, for T = -3°C the concentration ratio of cis-2 to 3 differ from those indicated by Fig. 1b. Thus the rearrangement shows a deuterium isotope effect.

For R = H both cis-2 and trans-2 are observed 3b) if T \leq +30°C. For T \geq -50°C $\underline{3}$ can also be detected. Analysis of the temperature dependence of the concentrations of cis-2, trans-2 and $\underline{3}$ allows the conclusion that trans-2 does not rearrange to $\underline{3}$. For R = cyclopropyl the same behaviour is found as for R = CH₃, whereas for R = phenyl 3a) radical $\underline{1}$ can be observed in the entire temperature range.

The occurrence of the unusual 1,5-hydrogen shift can be explained by the formation of a six-membered ring-transition state and a resonance-stabilised radical in the reaction $\operatorname{cis-2} \to \underline{3}$.

Support by the Swiss National Foundation for Scientific Research is greatfully acknowledged.

REFERENCES

- 1) J.W.Wilt, "Free Radical Rearrangements" in J.K.Kochi "Free Radicals", Vol.I, John Wiley & Sons Inc. (1973) p. 17. f. and references therein.
- 2) D.H.R.Barton, J.M.Beaton, L.E.Geller and M.M.Pechet, J.Amer.Chem.Soc. 82, 2640 (1960); 83, 4076 (1961).
- 3) a) D.C.Neckers, A.P.Shaap and J.Hardy, J.Amer.Chem.Soc. <u>88</u>, 1265 (1966); b) J.K.Kochi, P.J. Krusic and D.R.Eaton, J.Amer.Chem.Soc. <u>91</u> 1879 (1969).
- 4) See Ref. 1) p. 398 f. and references cited therein.
- 5) H.Paul and H.Fischer, Helv.Chim.Acta <u>56</u>, 1575 (1973).
- 6) E.J. Hamilton, Jr. and H. Fischer, Helv. Chim. Acta 56, 795 (1973).